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Abstract 
We present a state space description for cyclic LTI sys- 

tems which find applications in cyclic filter banks and 
wavelets. We also revisit the notions of reachability and 
observability in the cyclic context, and show a number of 
important differences from traditional noncyclic case. A 
number of related problems such as the paraunitary inter- 
polation problem and the cyclic paraunitary factorizability 
problem can be understood in a unified way by using the 
realization matrix defined by the state space description. 

1. INTRODUCTION 
Cyclic digital filters and filter banks have recently been 
introduced in the signal processing literature. In partic- 
ular, the fundamentals of cyclic multirate systems are in- 
troduced in [1,9], and the concepts applied to cyclic filter 
banks. Specific detailed problems pertaining to wavelet 
construction [2,3] have also been recently addressed. The 
applications of cyclic filter banks in image coding has been 
pointed out in [6,7]. In this paper we concentrate on state 
space descriptions of cyclic LTI systems and point out sev- 
eral departures from conventional state space theory. We 
also revisit the cyclic paraunitary interpolation problem 
[10] and the cyclic paraunitary factorization problem from 
a state space viewpoint and show a common link between 
these. 

The input-output description for a cyclic(L) LTI system 
is a circular convolution 

y(n) =  >    h(m)x(n — m) 

where the time arguments are interpreted modulo L. The 
frequency response matrix H(fc) is given by the L-point 
DFT of the impulse response matrix, that is H(/c) = 
J2tZo Wn)W£n where WL = e~2"^L. The quantity W* 
is interpreted as a unit of "cyclic-delay", and is used in 
structures representing cyclic systems. Any cyclic LTI sys- 
tem can be drawn in nonrecursive form using L — 1 cyclic 
delays as in Fig. 1, but sometimes recursive structures are 
more economic [9]. The recursive cyclic structure in Fig. 
2 has the frequency response H(k) = (a0 + aiW£)/(l — 
b\V£). Implementing such a recursive structure brings up 
the question of initial conditions, which are tricky because 
of the cyclic nature of time. We will address this in the 
more general setting of state space descriptions. 

An M x M cyclic transfer matrix E(fc) is said to be 
paraunitary if it is unitary for 0 < k < L - 1. This finds 
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application in cyclic orthonormal filter banks [9]. Unlike 
their noncyclic counterparts it has been shown in [10] that 
cyclic paraunitary matrices are not always factorizable. We 
return to this in Sec. 3. 

2. CYCLIC STATE-SPACE DESCRIPTIONS 

Consider a cyclic LTI structure with N cyclic delay ele- 
ments (e.g., N — L — 1 and N = 1 in Figs. 1 and 2, 
respectively). We can identify a set of TV state variables 
Vi(n) (outputs of the unit delay elements W£) and obtain 
equations of the form 

v(n + 1) = Av(n) + Bx(n) (1(a)) 

y(n) = Cv(n) + Dx(n) (1(6)) 

where v(n) = [t>i(n) v2(n) ... vN(n)]T is the state 
vector. Since this system can have multiple inputs and 
outputs, we have used bold letters x(n) and y(n) above. 
Repeated use of (1(a)) yields v(L) = Az'v(0) + a linear 
combination of samples ofx(n). Since all the time-indices 
are interpreted modulo-L, we have v(L) = v(0), and 

(I — AL)v(0) = linear combination of samples of x(n). 

Thus we can identify the initial state v(0), provided I — AL 

is nonsingular, i.e., no eigenvalue of A has the form \V[* for 
any integer m. In other words, the eigenvalues of A should 
not be at the unit-circle points indicated in Fig. 3. This 
nonsingularity condition can be understood in another way. 
If we evaluate the frequency response H(fc) explicitly, we 
have the form 

H(fc) = D + C   W-*I (w-fcI-A)_1B = P(fc) 
det (W~kl - A) 

The eigenvalue condition on A implies that the denom- 
inator det (W^kI — A) is nonzero for all integers k. As 
long as this is satisfied, H(fc) is defined for all k, and we 
can uniquely identify an "initial state" v(0) for any input 
sequence {x(n)}. 

Even though the expression for H(/c) resembles the non- 
cyclic case H„on(z) = D + C(zl — A)-1B, the impulse 
response matrix h(n) takes a slightly different form: 

h(n) 
D + CA^fl-A1-)    1 

CA"-1fl-AL] B 

n = 0 

1 < n < L - 1 

(2) 
Notice, for example, that h(0) / D, which is a departure 
from the noncyclic case. These differences arise because the 
initial condition v(0) is predetermined as explained earlier, 
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and cannot be set to zero (as we would in the noncyclic 
case). Though the computation of v(0) in general requires 
an initial overhead, such a computation followed by the 
recursive computation of y(n) as in Eq. (1) is often more 
economic than direct or FFT-based circular convolution of 
x(n) and h(n). 

Similarity transformations. If we define a new state 
space description by using the familiar similarity transform 
Ai = T-'AT.Bt = T_1B,Ci = CT, the new system 
(Ai,Bi,Ci,D) has the same h(n). Reason: we can verify 

by substitution that CAn_l(l-AtJ     Bis unchanged by 

the similarity transform for any n > 1. Thus we can find 
equivalent cyclic state space realizations by using similarity 
transforms. Note that D is unchanged by the transform. 

2.1. Reachability 
The ideas of reachability and observability [5], [8] can be 
extended to cyclic LTI systems but there are some dif- 
ferences from the traditional noncyclic case. For example 
we will see that reachability and observability together do 
not imply minimality. The cyclic LTI system is said to 
be reachable if we can arrive at any chosen final value V/ 
for the state vector v(n) at any chosen time n by proper 
choice of the input sequence x(.). To quantify this consider 
the state recursion v(n + 1) = Av(n) + Bx(n) again. If 
we apply this L times and use the periodicity conditions 
v(n + L) = v(n) and x(n + L) = x(n) we find 

(I-AL)v(n) = [B    AB 

*-A,BM 

x(n • 
,x(n 

1) 
2) 

x(n — L)_ 

Here we have used the notation that for any integer i > 0, 

rc„.B(t)=lB  AB (3) 

Let N denote the state dimension (size of v(n)) and r the 
number of inputs (size of x(n)). Then TZA,B{i) is a N x ir 
matrix with rank < N. The matrix 1ZA,B(L), in particular, 
has size N x Lr. Assume (I — AL) is nonsingular for reasons 
explained earlier. It is then clear that we can attain any 
value for the state v(n) at any time n by application of a 
suitable input x(n — 1), x(n — 2),..., x(n — L) if and only 
if the matrix TZA,B(L) has rank N. This gives a test for 
reachability. Now two cases should be distinguished: 

1. Let N < L. Then the rank of TZA,B{N) = rank of 
T^A,B{L) (Cayley-Hamilton theorem), and the reacha- 
bility test reduces to the conventional one. Moreover, 
in the nonreachable case we can perform the usual 
state reduction. 

2. Let N > L. This is possible in the mimo case (e.g., if 
H(fc) = W£lr, then N = r regardless of L). For this 
case two subcases are possible: 

(a) The rank OCR.A,B{L) is already N, so the system 
is reachable. 

(b) Therankof^>i,B(L) <rankof^A,ß(AT). If the 
latter is also < N, we can perform the usual re- 
duction and reduce the size N of the state vector. 
If the rank of HA,B(N) already N, we cannot do 

this, but we might still be able to perform a re- 
duction of the cyclic state space equations as we 
shall demonstrate below. 

2.2. Observability 
State-observability in a cyclic LTI system can also be de- 
fined similar to the traditional case, but with some subtle 
distinctions between the cases N < L and N > L. First as- 
sume N < L. The output equation y(n) = Cv(n) +Dx(n) 
can be repeatedly applied to yield 

_y(n + JV-l) 

C 
CA 

CAN- 

v(n) + f (4) 

Sc,/i("> 

where f depends on x(n), x(n + 1), .. .x(n + N - 1). The 
initial state v(n) can be uniquely found from the N samples 
of the input and output in this equation, as long as the 
matrix SC,A{N), which has N columns, has rank N. If 
N > L, the preceding equation is not meaningful because 
y(i) and x(i) repeat with period L. In this case, however, 
we have a very unusual situation. If the input and output 
are known for all L values of time, then in particular x(i) is 
known for all i and we can identify the state v(n) for all n 
using the state recursion. Thus the notion of observability 
becomes trivial for N > L. 

Example 1 
Consider the cyclic system 

H(k) 1 + aW* + a2Wlk + + aL -iXVf- i)fc 

for which a direct-form implementation is shown in Fig. 
4(a). With state variables as indicated, the state space 
description (A, B, C, D) can readily be identified, yielding 

0    10 
0    0    1 

0    0    0 
0    0    0 

D= 1 

Note that the number of state variables N = L ■ 
the preceding we verify that 

■R-A.B(L) = 

1. From 

?C,A (AT) = 

"0 0 0 1    0" 
0 0 1 0    0 

0 1 0 0    0 
.1 0 0 0    0. 

\aL~l a L-2 a 
0 a L-l .      a2 

0 0 .    aL~ 

Since TV = L-1,TIA,B(L) has size (L-l)xL and SC,A{N) 

has size (L — 1) X (L — 1). Both of these matrices have rank 
N — L — 1 (assuming, of course, a ^ 0), showing that 
the structure is both reachable and observable.   Notice, 



however, that the system H(k) can be rewritten in the 
recursive form 

using the fact that W£ = 1. This yields the simpler re- 
cursive implementation requiring only one cyclic delay W£ 
(Fig. 4(b)). We can verify that the state space description 
of the simplified structure is 

A = a,    B = l,    C = a{l-aL),    D = 1 - aL 

In this case the number of state variables N = 1. One 
readily verifies that HA,B(1) = 1 and SC.AW = a(l-aL). 
So 11A,B{L) and SC,A(N) have rank N, and the sturcture 
is reachable and observable (assuming a ^ 0 and aL # 1). 
Thus the two structures shown in Fig. 4 are two reach- 
able and observable implementations of H(k) with differ- 
ent state dimensions! The first one requires L — 1 cyclic 
delays {W£ elements); the second structure requires only 
one cyclic delay. 

Example 2 
Consider the 2x2 cyclic system shown in Fig. 5(a), and 
assume L = 3. The number of state variables is N = 4. 
The state space description has 

A = 

ro  o  l  oi c_ Li  o  o  oj 
Let L = 3. Then explicit computation shows that 

0    1    0    01 ro  oi 
0   0    10 
0    0    0    1 ,    B = 

1   1 
0   0 

0   o   o   oj Li  IJ 

nA,B{L) = 

ro  o  l   l  o  o 
110   0    11 
0    0    110   0 

Li   l   o  o  o  o 

KA,B(N) 

0 0 110 0 11 
110 0 110 0 
00110000 
1 10 0 0 0 0 0, 

i(2) = 

0 0 10 
10 0 0 
0 0 0 1 
0 10 0, 

Thus 11A,B(L) has rank 3 < N which shows that the cyclic 
system is not reachable. However, 11A,B(N) has rank 4. 
Since «SC,A(2) has rank 4, so does SC,A(N). So we cannot 
perform state-reduction using classical techniques. In this 
example, however, it is possible to perform state reduction 
of the cyclic system by simple manipulations of the struc- 
ture, and by using the fact that Wl = 1. For this we notice 
the identity 

[Ji][i:] [!!]-<•♦•>[!!] 
which shows that the transfer matrix of Fig. 5(a) is even- 
tually 

T + W3
2fc 

H(t)    =[1+
0

W 
wi" 

W£ + W*k 

o     I ri  i] 
+ w?J [i  i. 

[i  i] 

which has the implementation shown in Fig. 5(b) requiring 
only two cyclic delays. Thus in this example, 1ZA,B(N) and 
SC,A(N) have rank N but ~JIA,B(L) does not, and we were 
able to reduce state-dimension. 

In Example 1 we found that the state dimension could 
be reduced even though the cyclic system is reachable as 
well as observable. In Example 2 we found that TZA,B(N) 

and SC,A(N) have rank N and TZA,B{L) has deficient rank, 
and the state dimension could again be reduced. The ques- 
tion now is, what is a necessary and sufficient condition for 
the minimality of state dimension in cyclic LTI structures? 
A related question is, can we develop a theory paralleling 
the Smith-McMillan form and relate the minimum state 
dimension (McMillan degree) to this form? These appear 
to be fundamental questions requiring further work. 

2.3. Unitariness of Realization Matrix 
Suppose we are given an implementation for a cyclic trans- 
fer matrix E(fc). This implementation has a state space de- 
scription of the form (1). The realization matrix for the 
implementation is defined as 

[AS] 
The following result proved in [10] connects the cyclic- 
paraunitary property to unitariness of the realization ma- 
trix. 

Lemma 1. If the realization matrix is unitary, then the 
cyclic system E(fc) is paraunitary. 0 

3. CONCLUDING REMARKS 

We conclude by making explicit the connection between 
three related problems in cyclic LTI system theory: 

1. Paraunitary interpolation problem. Given a se- 
quence of unitary matrices E(fc),0 < k < L— 1, does there 
exists an FIR paraunitary matrix 

Eint(z) = ^ein((n)2-
n 

such that E(fc) = Eint{W£k)? This is called the parauni- 
tary interpolation problem. In [10] it has been shown that 
such an interpolant Eint(z) does not always exist. 

2. Cyclic paraunitary factorization problem. We know 
that any noncyclic causal FIR paraunitary system can 

be factorized into degree one building blocks I — u.uj + 

UJUJZ
-1

 (where Uj are unit norm vectors). Can a cyclic pa- 
raunitary system E(fc) be factorized into degree-one cyclic 

building blocks Ui(fc) = I - vnu\ + UiUJ W£? It turns out 
that this is not always possible [10]. 

3. Unitary realization-matrix problem. Lemma 1 is 
analogous to a result in the noncyclic case [8]. However, 
unlike in the noncyclic case, we do not have the converse 
result. That is, even if E(fc) is paraunitary, there may not 
exist a minimal nonrecursive structure (i.e., minimal struc- 
ture with all eigenvalues of A equal to zero), with unitary 
realization matrix. When such a structure does exist, the 
FIR interpolant Ein((z) = D + C(zl - A)-JB, obtained 
by replacing W* with z~x in the structure, would be pa- 
raunitary (because the converse part holds in the noncyclic 



case [8]). Since cyclic paraunitary systems do not neces- 
sarily have FIR interpolants, this shows that E(fc) does not 
always have a structure with unitary realization matrix. 

By combining the preceding arguments we can show 
this: Let E(Ac) be cyclic paraunitary. Then the following 
three statements are equivalent: (a) there exists a causal 
FIR paraunitary interpolant Einl(z), (b) E(fc) can be fac- 
torized into unitary building blocks like U4(fc) (and a con- 
stant factor representing E(0)), and (c) there exists a cyclic 
recursive implementation for E(fc) such that the realization 
matrix is unitary. 

Fig. 1. Implementation of an arbitrary cyclic(L) LTI system. 

x(n) V 
W," 

U}X£d 

y(n) 

Fig. 2. The cyclic direct-form structure for a first order filter. 
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Fig. 3. The points on the unit-circle correspond- 
ing to the DFT frequencies (L=8). 
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Fig. 4. Example 1. Two implementations of a cyclic(L) system. 
Both of these are reachabale and observable implementations, 
(a) 1-1 state variables used and (b) only one state variable used. 
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Fig. 5. Example 2. (a) A cyclic(3) system requiring 
four cyclic delays, and (b) reduced system requiring 
two cyclic delays. Classical techniques cannot 
be used to perform this reduction. 


